作物疾病是对粮食安全的主要威胁,其快速识别对于防止产量损失很重要。由于缺乏必要的基础设施,因此很难迅速识别这些疾病。计算机视觉的最新进展和智能手机渗透的渗透为智能手机辅助疾病识别铺平了道路。大多数植物疾病在植物的叶面结构上留下了特定的文物。这项研究于2020年在巴基斯坦拉合尔工程技术大学计算机科学与工程系进行,以检查基于叶片的植物疾病识别。这项研究为叶面疾病鉴定提供了基于神经网络的深度解决方案,并纳入了图像质量评估,以选择执行识别所需质量的图像,并将其命名为农业病理学家(AGRO PATH)。新手摄影师的捕获图像可能包含噪音,缺乏结构和模糊,从而导致诊断失败或不准确。此外,Agropath模型具有99.42%的叶面疾病鉴定精度。拟议的添加对于在农业领域的叶面疾病鉴定的应用特别有用。
translated by 谷歌翻译
数字图像包含大量冗余,因此,应用了压缩以减少图像尺寸而不会损失合理的图像质量。在包含图像序列的视频的情况下,在包含图像序列和更高的压缩比中,在低吞吐量网络中实现了相同的突出。评估这种情况下的图像质量变得特别兴趣。大多数情景中的主观评估变得不可行,因此客观评估是首选。在三种客观质量措施中,全文和减少参考方法需要某种形式的原始图像来计算在广播或IP视频等情景中不可行的质量分数。因此,提出了一种非参考质量度量来评估计算亮度和多尺度梯度统计的数字图像的质量,以及平均减去对比度标准化产品作为具有缩放共轭梯度的前馈神经网络的特征。训练有素的网络提供了良好的回归和R2测量,并进一步测试实时图像质量评估数据库第2版已显示有前途的结果。 Pearson,Kendall和Spearman的相关性是计算预测和实际质量评分之间的相关性,结果与最先进的系统相当。此外,所提出的指标的计算方式比其对应物更快,并且可以用于图像序列的质量评估。
translated by 谷歌翻译
This paper presents our solutions for the MediaEval 2022 task on DisasterMM. The task is composed of two subtasks, namely (i) Relevance Classification of Twitter Posts (RCTP), and (ii) Location Extraction from Twitter Texts (LETT). The RCTP subtask aims at differentiating flood-related and non-relevant social posts while LETT is a Named Entity Recognition (NER) task and aims at the extraction of location information from the text. For RCTP, we proposed four different solutions based on BERT, RoBERTa, Distil BERT, and ALBERT obtaining an F1-score of 0.7934, 0.7970, 0.7613, and 0.7924, respectively. For LETT, we used three models namely BERT, RoBERTa, and Distil BERTA obtaining an F1-score of 0.6256, 0.6744, and 0.6723, respectively.
translated by 谷歌翻译
Deep learning models require an enormous amount of data for training. However, recently there is a shift in machine learning from model-centric to data-centric approaches. In data-centric approaches, the focus is to refine and improve the quality of the data to improve the learning performance of the models rather than redesigning model architectures. In this paper, we propose CLIP i.e., Curriculum Learning with Iterative data Pruning. CLIP combines two data-centric approaches i.e., curriculum learning and dataset pruning to improve the model learning accuracy and convergence speed. The proposed scheme applies loss-aware dataset pruning to iteratively remove the least significant samples and progressively reduces the size of the effective dataset in the curriculum learning training. Extensive experiments performed on crowd density estimation models validate the notion behind combining the two approaches by reducing the convergence time and improving generalization. To our knowledge, the idea of data pruning as an embedded process in curriculum learning is novel.
translated by 谷歌翻译
Density estimation is one of the most widely used methods for crowd counting in which a deep learning model learns from head-annotated crowd images to estimate crowd density in unseen images. Typically, the learning performance of the model is highly impacted by the accuracy of the annotations and inaccurate annotations may lead to localization and counting errors during prediction. A significant amount of works exist on crowd counting using perfectly labelled datasets but none of these explore the impact of annotation errors on the model accuracy. In this paper, we investigate the impact of imperfect labels (both noisy and missing labels) on crowd counting accuracy. We propose a system that automatically generates imperfect labels using a deep learning model (called annotator) which are then used to train a new crowd counting model (target model). Our analysis on two crowd counting models and two benchmark datasets shows that the proposed scheme achieves accuracy closer to that of the model trained with perfect labels showing the robustness of crowd models to annotation errors.
translated by 谷歌翻译
The rapid outbreak of COVID-19 pandemic invoked scientists and researchers to prepare the world for future disasters. During the pandemic, global authorities on healthcare urged the importance of disinfection of objects and surfaces. To implement efficient and safe disinfection services during the pandemic, robots have been utilized for indoor assets. In this paper, we envision the use of drones for disinfection of outdoor assets in hospitals and other facilities. Such heterogeneous assets may have different service demands (e.g., service time, quantity of the disinfectant material etc.), whereas drones have typically limited capacity (i.e., travel time, disinfectant carrying capacity). To serve all the facility assets in an efficient manner, the drone to assets allocation and drone travel routes must be optimized. In this paper, we formulate the capacitated vehicle routing problem (CVRP) to find optimal route for each drone such that the total service time is minimized, while simultaneously the drones meet the demands of each asset allocated to it. The problem is solved using mixed integer programming (MIP). As CVRP is an NP-hard problem, we propose a lightweight heuristic to achieve sub-optimal performance while reducing the time complexity in solving the problem involving a large number of assets.
translated by 谷歌翻译
The increase in the number of unmanned aerial vehicles a.k.a. drones pose several threats to public privacy, critical infrastructure and cyber security. Hence, detecting unauthorized drones is a significant problem which received attention in the last few years. In this paper, we present our experimental work on three drone detection methods (i.e., acoustic detection, radio frequency (RF) detection, and visual detection) to evaluate their efficacy in both indoor and outdoor environments. Owing to the limitations of these schemes, we present a novel encryption-based drone detection scheme that uses a two-stage verification of the drone's received signal strength indicator (RSSI) and the encryption key generated from the drone's position coordinates to reliably detect an unauthorized drone in the presence of authorized drones.
translated by 谷歌翻译
Video surveillance using drones is both convenient and efficient due to the ease of deployment and unobstructed movement of drones in many scenarios. An interesting application of drone-based video surveillance is to estimate crowd densities (both pedestrians and vehicles) in public places. Deep learning using convolution neural networks (CNNs) is employed for automatic crowd counting and density estimation using images and videos. However, the performance and accuracy of such models typically depend upon the model architecture i.e., deeper CNN models improve accuracy at the cost of increased inference time. In this paper, we propose a novel crowd density estimation model for drones (DroneNet) using Self-organized Operational Neural Networks (Self-ONN). Self-ONN provides efficient learning capabilities with lower computational complexity as compared to CNN-based models. We tested our algorithm on two drone-view public datasets. Our evaluation shows that the proposed DroneNet shows superior performance on an equivalent CNN-based model.
translated by 谷歌翻译
人群计数是公共场所情境意识的有效工具。使用图像和视频进行自动人群计数是一个有趣但充满挑战的问题,在计算机视觉中引起了极大的关注。在过去的几年中,已经开发了各种深度学习方法来实现最先进的表现。随着时间的流逝,这些方法在许多方面发生了变化,例如模型架构,输入管道,学习范式,计算复杂性和准确性提高等。在本文中,我们对人群计数领域中最重要的贡献进行了系统和全面的评论。 。尽管对该主题的调查很少,但我们的调查是最新的,并且在几个方面都不同。首先,它通过模型体系结构,学习方法(即损失功能)和评估方法(即评估指标)对最重要的贡献进行了更有意义的分类。我们选择了杰出和独特的作品,并排除了类似的作品。我们还通过基准数据集对著名人群计数模型进行分类。我们认为,这项调查可能是新手研究人员了解随着时间的推移和当前最新技术的逐步发展和贡献的好资源。
translated by 谷歌翻译
Pansharpening使用高空间分辨率Panchromatic图像的特征增强了高光谱分辨率多光谱图像的空间细节。有许多传统的pansharpening方法,但是产生表现出高光谱和空间保真度的图像仍然是一个空旷的问题。最近,深度学习已被用来产生有希望的Pansharped图像。但是,这些方法中的大多数通过使用相同的网络进行特征提取,对多光谱和全球性图像都采用了类似的处理。在这项工作中,我们提出了一个新型的基于双重注意的两流网络。首先使用两个单独的网络进行两个图像的特征提取,这是一种具有注意机制的编码器,可重新校准提取的功能。接下来是融合的特征,形成喂入图像重建网络的紧凑表示形式以产生pansharped图像。使用标准定量评估指标和视觉检查的PL \'{E} IADES数据集的实验结果表明,就Pansharped图像质量而言,所提出的方法比其他方法更好。
translated by 谷歌翻译